Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.013
1.
Food Res Int ; 186: 114335, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729717

Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.


Gels , Germination , Glycine max , Isoflavones , Soy Milk , Isoflavones/analysis , Isoflavones/metabolism , Soy Milk/chemistry , Soy Milk/metabolism , Glycine max/growth & development , Glycine max/chemistry , Glycine max/metabolism , Food Handling/methods , Nutritive Value , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Energy Metabolism , Lactones/metabolism , Lactones/analysis
2.
Food Res Int ; 186: 114371, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729729

In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.


Emulsions , Lactobacillus plantarum , Polysaccharides , Probiotics , Soybean Proteins , Zebrafish , Soybean Proteins/chemistry , Animals , Polysaccharides/chemistry , Lactobacillus plantarum/metabolism , Glycine max/chemistry , Viscosity
3.
Sci Rep ; 14(1): 10426, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714752

Discriminating different cultivars of maca powder (MP) and detecting their authenticity after adulteration with potent adulterants such as maize and soy flour is a challenge that has not been studied with non-invasive techniques such as near infrared spectroscopy (NIRS). This study developed models to rapidly classify and predict 0, 10, 20, 30, 40, and 50% w/w of soybean and maize flour in red, black and yellow maca cultivars using a handheld spectrophotometer and chemometrics. Soy and maize adulteration of yellow MP was classified with better accuracy than in red MP, suggesting that red MP may be a more susceptible target for adulteration. Soy flour was discovered to be a more potent adulterant compared to maize flour. Using 18 different pretreatments, MP could be authenticated with R2CV in the range 0.91-0.95, RMSECV 6.81-9.16 g/,100 g and RPD 3.45-4.60. The results show the potential of NIRS for monitoring Maca quality.


Machine Learning , Powders , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Zea mays/chemistry , Spectrophotometry/methods , Macau , Food Contamination/analysis , Glycine max/chemistry , Flour/analysis
4.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709780

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Bacteria , Glycine max , Nanoparticles , Rhizosphere , Silicon , Glycine max/microbiology , Glycine max/growth & development , Glycine max/drug effects , Glycine max/chemistry , Nanoparticles/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/growth & development , Silicon/pharmacology , Silicon/chemistry , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/drug effects , Soil Microbiology , Microbiota/drug effects , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Leaves/growth & development , Endophytes/physiology , Endophytes/drug effects , Silicon Dioxide/chemistry , Salt Stress
5.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Article En | MEDLINE | ID: mdl-38710505

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Genome-Wide Association Study , Glycine max , Isoflavones , Plant Proteins , Polymorphism, Single Nucleotide , Seeds , Glycine max/metabolism , Glycine max/genetics , Glycine max/chemistry , Isoflavones/metabolism , Isoflavones/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant
6.
PLoS One ; 19(5): e0303040, 2024.
Article En | MEDLINE | ID: mdl-38713652

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Antioxidants , Germination , Glycine max , Melatonin , Nutritive Value , Pesticide Residues , Seeds , Melatonin/pharmacology , Germination/drug effects , Pesticide Residues/analysis , Seeds/drug effects , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Glycine max/chemistry , Antioxidants/metabolism , Edible Grain/drug effects , Edible Grain/metabolism , Phenols/analysis , Food Contamination/analysis , Glutathione/metabolism
7.
Reprod Domest Anim ; 59(5): e14570, 2024 May.
Article En | MEDLINE | ID: mdl-38700367

The cryopreservation process induces alterations in cellular parameters and epigenetic patterns in bull sperm, which can be prevented by adding cryoprotectants in the freezing extenders. The purpose of this study was to compare the protective effects of two extenders based on soybean lecithin (SLE) and egg yolk (EYE) on epigenetic patterns and quality parameters of sperm such as motility parameters, mitochondrial membrane integrity, DNA fragmentation, viability, and apoptotic-like changes of bull sperm after cryopreservation. Results demonstrated that cryopreservation significantly (p < .05) reduced the level of DNA global methylation, H3K9 histone acetylation, and H3K4 histone methylation in both frozen groups compared to the fresh sperm. Also, the level of H3K9 acetylation was lower in the frozen SLE group (21.2 ± 1.86) compared to EYE group (15.2 ± 1.86). In addition, the SLE frozen group had a higher percentage of viability, progressive motility, and linearity (LIN) in SLE frozen group compared to EYE frozen group. However, no difference was observed in mitochondrial membrane integrity and DNA fragmentation between SLE and EYE frozen groups. While soybean-lecithin-based extender showed some initial positive impacts of epigenetics and semen parameters, further investigations can provide useful information for better freezing.


Cryopreservation , Cryoprotective Agents , DNA Fragmentation , DNA Methylation , Epigenesis, Genetic , Semen Preservation , Sperm Motility , Spermatozoa , Male , Cryopreservation/veterinary , Animals , Cattle , Spermatozoa/drug effects , Spermatozoa/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , DNA Methylation/drug effects , Egg Yolk/chemistry , Lecithins/pharmacology , Histones/metabolism , Histones/genetics , Glycine max/chemistry , Semen Analysis/veterinary , Acetylation
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124349, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38692107

Fluorine (F) is a pivotal element in the formation of human dental and skeletal tissues, and the consumption of water and tea constitutes a significant source of fluoride intake. However, prolonged ingestion of water and tea with excessive fluoride content can lead to fluorosis, which poses a serious health hazard. In this manuscript, a novel turn-on fluorescent probe DCF synthesized by bis-coumarin and tert-butyldiphenylsilane (TBDPS) was introduced for detecting F- in potable water and tea infusions. By leveraging the unique chemical affinity between fluoride and silicon, F- triggers the silicon-oxygen bond cleavage in DCF, culminating in a conspicuous emission of yellow fluorescence. Validated through a succession of optical tests, this probe exhibits remarkable advantages in terms of superior selectivity, a low detection limit, a large Stokes shift, and robust interference resistance when detecting inorganic fluoride. Moreover, it can serve as portable test strips for on-site real-time identification and quantitative analysis of F-. Furthermore, the application of DCF for in-situ monitoring and imaging of F- in zebrafish and soybean root tissues proved its significant value for F- detection in both animal and plant systems. This probe potentially functions as an efficient instrument for delving into the toxic mechanisms of fluoride in physiological processes.


Coumarins , Fluorescent Dyes , Tea , Zebrafish , Fluorescent Dyes/chemistry , Animals , Coumarins/chemistry , Tea/chemistry , Drinking Water/analysis , Spectrometry, Fluorescence/methods , Fluorine/analysis , Fluorine/chemistry , Fluorides/analysis , Glycine max/chemistry , Limit of Detection , Optical Imaging/methods
9.
Ultrason Sonochem ; 105: 106864, 2024 May.
Article En | MEDLINE | ID: mdl-38581796

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Inulin , Soybean Proteins , Inulin/chemistry , Soybean Proteins/chemistry , Ultrasonic Waves , Glycine max/chemistry , Sonication
10.
J Agric Food Chem ; 72(19): 11195-11204, 2024 May 15.
Article En | MEDLINE | ID: mdl-38564697

Genetically modified crops (GMCs) have been discussed due to unknown safety, and thus, it is imperative to develop an effective detection technology. CRISPR/Cas is deemed a burgeoning technology for nucleic acid detection. Herein, we developed a novel detection method for the first time, which combined thermostable Cas12b with loop-mediated isothermal amplification (LAMP), to detect genetically modified (GM) soybeans in a customized one-pot vessel. In our method, LAMP-specific primers were used to amplify the cauliflower mosaic virus 35S promoter (CaMV35S) of the GM soybean samples. The corresponding amplicons activated the trans-cleavage activity of Cas12b, which resulted in the change of fluorescence intensity. The proposed bioassay was capable of detecting synthetic plasmid DNA samples down to 10 copies/µL, and as few as 0.05% transgenic contents could be detected in less than 40 min. This work presented an original detection method for GMCs, which performed rapid, on-site, and deployable detection.


Glycine max , Nucleic Acid Amplification Techniques , Plants, Genetically Modified , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Plants, Genetically Modified/genetics , Plants, Genetically Modified/chemistry , Glycine max/genetics , Glycine max/chemistry , Biological Assay/methods , CRISPR-Cas Systems , Caulimovirus/genetics , Bacterial Proteins/genetics
11.
Ultrason Sonochem ; 105: 106873, 2024 May.
Article En | MEDLINE | ID: mdl-38608436

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Emulsions , Glycolipids , Glycoproteins , Lecithins , Lipid Droplets , Lecithins/chemistry , Glycolipids/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Humans , Glycine max/chemistry , Milk, Human/chemistry , Chemical Phenomena , Particle Size , Ultrasonic Waves , Sonication
12.
J Hazard Mater ; 470: 134272, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613953

As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.


Carbon , Glycine max , Plant Leaves , Quantum Dots , Plant Leaves/chemistry , Glycine max/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Microplastics/toxicity , Particle Size , Plant Roots , Plastics/chemistry , Fluorescence
13.
Food Res Int ; 185: 114292, 2024 Jun.
Article En | MEDLINE | ID: mdl-38658072

The synthetic, non-renewable nature and harmful effects of plastic packaging have led to the synthesis of eco-friendly renewable bio-nanocomposite film. The present work was aimed at the formulation and characterization of bio-nanocomposite film using soybean meal protein, montmorillonite (MMT), and debittered kinnow peel powder. The composition of film includes protein isolate (5% w/v), glycerol (50% w/w), peel powder (20% w/w), and MMT (0.5-2.5% w/w). Incorporation of MMT in soybean meal protein-based film loaded with kinnow peel powder showed lesser solubility (16.76-26.32%), and swelling ability (142.77-184.21%) than the film prepared without MMT (29.41%, & 229.41%, respectively). The mechanical properties like tensile strength of nanocomposite film improved from 9.41 to 38.69% with the increasing concentration of MMT. The water vapor transmission rate of the nanocomposite film was decreased by 3.45-17.85% when the MMT concentration increased. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed no considerable change in the structural properties of the film after the addition of MMT. Differential scanning colorimeter analysis revealed the increment in melting temperature (85.33-92.67 °C) of the film with a higher concentration of MMT. Scanning electron microscopy analysis indicated an increased distributed area of MMT throughout the film at higher concentrations. The antimicrobial activity of the film was remarkably increased by 4.96-17.18% with the addition of MMT. The results obtained in the current work confirmed that MMT incorporation in soybean meal protein-based film can augment its properties and can be utilized for enhancing the storage period of food products.


Bentonite , Food Packaging , Nanocomposites , Powders , Soybean Proteins , Tensile Strength , Bentonite/chemistry , Nanocomposites/chemistry , Soybean Proteins/chemistry , Food Packaging/methods , Glycine max/chemistry , Solubility , Steam
14.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38594830

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Nanotechnology , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Cytochromes c/chemistry , Cytochromes c/analysis , Bradykinin/chemistry , Bradykinin/analysis , Angiotensin II/chemistry , Angiotensin II/analysis , Phosphatidylcholines/chemistry , Phosphatidylcholines/analysis , Glycine max/chemistry
15.
Food Chem ; 449: 139305, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38615636

The main objective of this study is to investigate the impact and mechanism of soy lecithin incorporation into the gelatin-cinnamaldehyde emulsion, focusing on how it influences emulsion stability during the electrospinning process. In this work, a cinnamaldehyde/gelatin/soy lecithin (CGS) fiber membrane with excellent antibacterial properties was successfully created. The addition of soy lecithin improves the stability of the emulsion and improves the loading performance and fiber morphology of the CGS fiber membrane. Fourier Transform infrared spectroscopy (FTIR) and urea addition confirmed that soy lecithin may strengthen the interface structure of gelatin in the oil and water phases through hydrogen bonds, thus enhancing the stability of the emulsion in electrospinning. The application tests also revealed that the CGS fiber membrane effectively preserved the sensory quality of beef. This study indicates that the vector construction method can extend the utilization of cinnamaldehyde in food industry.


Acrolein , Acrolein/analogs & derivatives , Emulsions , Gelatin , Glycine max , Lecithins , Nanofibers , Acrolein/chemistry , Acrolein/pharmacology , Gelatin/chemistry , Emulsions/chemistry , Lecithins/chemistry , Nanofibers/chemistry , Glycine max/chemistry , Animals , Cattle , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
16.
J Agric Food Chem ; 72(17): 9947-9954, 2024 May 01.
Article En | MEDLINE | ID: mdl-38647139

Glycinin is an important allergenic protein. A1a is the acidic chain of the G1 subunit in glycinin (G1A1a), and it has strong allergenicity. In this study, we used phage display technology to express the protein of G1A1a and its overlapping fragments and an indirect enzyme-linked immunosorbent assay (iELISA) to determine the antigenicity and allergenicity of the expressed protein. After three rounds of screening, it was determined that fragment A1a-2-B-I (151SLENQLDQMPRRFYLAGNQEQEFLKYQQEQG181) is the allergenic domain of G1A1a destroyed by thermal processing. In addition, three overlapping peptides were synthesized from fragments A1a-2-B-I, and a linear epitope was found in this domain through methods including dot blot and iELISA. Peptide 2 (157DQMPRRFYLANGNQE170) showed allergenicity, and after replacing it with alanine, it was found that amino acids D157, Q158, M159, and Y164 were the key amino acids that affected its antigenicity, while Q158, M159, R162, and N168 affected allergenicity.


Allergens , Globulins , Hot Temperature , Soybean Proteins , Allergens/immunology , Allergens/chemistry , Humans , Globulins/chemistry , Globulins/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Amino Acid Sequence , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Protein Domains , Antigens, Plant/immunology , Antigens, Plant/chemistry , Antigens, Plant/genetics , Glycine max/chemistry , Glycine max/immunology , Enzyme-Linked Immunosorbent Assay
17.
Shokuhin Eiseigaku Zasshi ; 65(2): 25-30, 2024.
Article Ja | MEDLINE | ID: mdl-38658344

Processed foods containing soybean or maize are subject to labeling regulations pertinent to genetically modified (GM) foods in Japan. To confirm the reliability of the labeling procedure of GM foods, the Japanese standard analytical methods (standard methods) using real-time PCR technique have been established. Although certain DNA extraction protocols are stipulated as standard in these methods, the use of other protocols confirmed to be equivalent to the existing ones was permitted. In this study, the equivalence testing of the techniques employed for DNA extraction from processed foods containing soybean or corn was conducted. In this study, the equivalence testing of the techniques employed for DNA extraction from processed foods containing soybean or maize was conducted. The silica membrane-based DNA extraction kits, GM quicker 4 and DNeasy Plant Maxi Kit (Maxi Kit), as an existing method were compared. GM quicker 4 was considered to be equivalent to or better than Maxi Kit.


DNA, Plant , Food, Genetically Modified , Glycine max , Zea mays , DNA, Plant/isolation & purification , DNA, Plant/genetics , Food Analysis/methods , Food Labeling , Food, Processed , Glycine max/chemistry , Glycine max/genetics , Japan , Plants, Genetically Modified/genetics , Plants, Genetically Modified/chemistry , Real-Time Polymerase Chain Reaction , Zea mays/chemistry , Zea mays/genetics
18.
Int J Biol Macromol ; 267(Pt 2): 131404, 2024 May.
Article En | MEDLINE | ID: mdl-38582466

Chitosan has received much more attention as a functional biopolymer with applications in pharmaceuticals, agricultural, drug delivery systems and cosmetics. The objectives of present investigation were to carry out modification of chitosan for enhancement of aqueous solubility, which will impart increased solubility and dissolution rate of poorly soluble drug itraconazole (ITZ) and also evaluate the modified chitosan for soyabean seed germination studies. The modification of chitosan was accomplished through the antisolvent precipitation method; employing five carboxylic acids. The resulting products were assessed for changes in molecular weight, degree of deacetylation, solubility and solid state characterization. Subsequently, the modified chitosan was complexed with itraconazole using the co-grinding technique. The prepared formulations were evaluated for solubility, FTIR (Fourier-transform infrared spectroscopy), PXRD (Powder X-ray diffraction), in-vitro dissolution studies. Furthermore the effect of modified chitosan has been evaluated on soybean seed germination. Results demonstrated that, modified chitosan improves self and solubility of itraconazole by six folds. As there was increased degree of deacetylation of chitosan leads to improvement in solubility. The results of FTIR showed the slight shifting of peaks in co-grind formulations of itraconazole. Formulations showed reduction in crystallinity of drug which leads to enhancement in dissolution rate as compared to pure itraconazole. Retention of property of seed germination was observed with modified chitosan at optimum concentration of 3 % w/v, with benefit of enhanced aqueous solubility of chitosan. This positive result paves the way for the advancement of pharmaceutical and agrochemical products employing derivatives of chitosan.


Agrochemicals , Chitosan , Itraconazole , Solubility , Chitosan/chemistry , Agrochemicals/chemistry , Agrochemicals/pharmacology , Itraconazole/chemistry , Itraconazole/pharmacology , Glycine max/chemistry , Germination/drug effects , Seeds/chemistry , Seeds/drug effects , Chemical Phenomena , Spectroscopy, Fourier Transform Infrared , Molecular Weight , X-Ray Diffraction
19.
J Agric Food Chem ; 72(17): 9994-10004, 2024 May 01.
Article En | MEDLINE | ID: mdl-38648468

Triterpenoid saponins, synthesized via the mevalonic acid (MVA) pathway in the cytoplasm, provide protection against pathogens and pests in plants and health benefits for humans. However, the mechanisms by which triterpenoid saponins are transported between cellular compartments remain uncharacterized. Here, we characterize a tonoplast localized multidrug and toxic compound extrusion transporter, GmMATE100 (encoded by Glyma.18G143700), from soybean (Glycine max L.). GmMATE100 is co-expressed with soyasaponin biosynthetic genes, and its expression was induced by MeJA treatment, which also led to soyasaponin accumulation in soybean roots. GmMATE100 efficiently transports multiple type-B soyasaponins as well as type-A soyasaponins with low affinity from the cytosol to the vacuole in a yeast system. The GmMATE100 loss-of-function mutant showed a significant decrease in type-A and type-B soyasaponin contents in soybean roots. This study not only characterized the first soybean triterpenoid saponin transporter but also provided new knowledge for the rational engineering of soyasaponin content and composition in soybean plants to modulate their levels within crop environments.


Glycine max , Plant Proteins , Saponins , Vacuoles , Glycine max/metabolism , Glycine max/chemistry , Glycine max/genetics , Saponins/metabolism , Vacuoles/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biological Transport , Plant Roots/metabolism , Plant Roots/chemistry , Plant Roots/genetics , Gene Expression Regulation, Plant
20.
Food Chem ; 449: 139172, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38574522

There are numerous studies on the application of soybean whey protein in three-dimensional (3D) printing. In this study, the effects of soybean meal particles (5%, 6%, 7%, 8%, 9%, and 10%) and oil-phase concentrations (70%, 72%, 74%, 76%, and 78%) on the stability and 3D-printing performance of a soybean-meal-based high-internal-phase emulsion were investigated. The results showed that the particle size of the emulsion decreased with increasing soybean meal particle concentration, and that increasing the concentration of the oil phase improved the viscoelasticity of the emulsion. Rheological tests further showed that the higher storage modulus of the emulsion indicated better support and stability. The emulsion with 8% soybean meal-particles and 76% oil-phase concentration exhibited the best printing effect. This study provides an effective solution for the preparation of stabilized high-internal-phase emulsions of soybean meal particles suitable for 3D printing.


Emulsions , Glycine max , Particle Size , Printing, Three-Dimensional , Rheology , Emulsions/chemistry , Glycine max/chemistry , Viscosity , Whey Proteins/chemistry
...